Update cookies preferences
Showing posts with label green architecture. Show all posts
Showing posts with label green architecture. Show all posts

Tuesday, December 30, 2025

MINIMALIST DESIGN AND ITS ROLE IN SUSTAINABLE ARCHITECTURE | ARCHITALKTURAL

 


MINIMALIST DESIGN AND ITS ROLE IN SUSTAINABLE ARCHITECTURE

In recent decades, minimalist design has surged in popularity, captivating audiences with its clean lines, simplicity, and timeless aesthetic. However, minimalism represents much more than a mere design trend; it lays a powerful foundation for sustainable architecture. By prioritizing efficiency, restraint, and intentional design, minimalist architecture inherently embraces the core principles of green building and long-term environmental stewardship. This article delves into how minimalist design not only contributes to sustainable architecture but also highlights real-world examples and connects these principles to established green building rating systems, making a compelling case for the value of minimalism in promoting a more sustainable future.



OBJECTIVE

This blog perfectly complements my previous explorations of green building by seamlessly integrating conceptual insights, practical sustainability connections, and compelling case studies—many of which are relevant to tropical climates. It also aligns with green building rating systems, culminating in a strong conclusion and providing valuable citations for deeper exploration.

Minimalist architecture embodies the principle of "less is more," prioritizing function over unnecessary embellishments. By focusing on simplicity in form and space, genuine expression of materials, and the removal of superfluous elements, minimalist design evolves into a powerful tool for achieving sustainability goals. When thoughtfully applied, minimalism transcends mere aesthetics to become a strategic approach that benefits both the environment and the user.



The following are the major roles that Minimalist Style play in Sustainable Architecture

1. Reduced Material Use and Construction Waste

Minimalist buildings intentionally limit the number of materials used, focusing only on what is essential. Sustainable benefits include lower material consumption, reduced construction waste and decreased embodied energy. By avoiding excessive finishes and decorative layers, minimalist architecture reduces resource extraction and manufacturing impacts—key concerns in sustainable construction.



2. Smaller, Efficient, and Purposeful Spaces

Minimalist design favors compact and well-organized layouts rather than oversized or underutilized spaces. This results in lower energy demand for heating, cooling, and lighting; reduced land use and site disturbance; and encouragement of multifunctional spaces. Space efficiency directly supports sustainability by reducing both operational and environmental costs over a building’s life cycle.



3. Maximizing Natural Light and Ventilation

Minimalist architecture often incorporates:

  • Open floor plans

  • Large, strategically placed windows

  • Simple building forms that enhance airflow

Environmental advantages:

  • Reduced reliance on artificial lighting

  • Improved natural ventilation

  • Enhanced indoor environmental quality (IEQ)

In tropical regions such as the Philippines, these strategies help reduce cooling loads while maintaining occupant comfort.


4. Honest and Durable Use of Materials

Minimalist architecture frequently highlights materials in their natural or raw state, such as exposed concrete; natural timber; stone and steel. These materials are often chosen for their durability and longevity, reducing the need for frequent replacement or maintenance. Using fewer surface finishes also minimizes the use of chemicals, adhesives, and coatings that can negatively impact indoor air quality.


5. Simplified Construction and Lower Carbon Footprint

Minimalist buildings typically use: simple geometries; repetitive structural modules; and straightforward construction systems. This simplicity leads to: faster construction timelines; reduced labor and material waste; and lower overall carbon emissions. Efficiency in construction directly supports sustainable building objectives.


6. Compatibility with Passive Design Strategies

Minimalism works seamlessly with passive design principles, which are central to sustainable architecture.

These include:

  • Proper building orientation

  • Natural shading elements

  • Use of thermal mass

  • Clean roof forms suitable for solar panels

Minimalist architecture avoids unnecessary complexity, making passive systems more effective and easier to integrate.


7. Encouraging Conscious and Sustainable Living

Minimalist spaces influence how occupants live and interact with their environment. Residents are more likely to: consume less energy and water; avoid unnecessary material accumulation and value long-lasting, high-quality elements. Sustainability is not only achieved through design but also through behavior, and minimalist architecture encourages mindful consumption.



Case Study Examples

1. Tropical Minimalist Homes (Southeast Asia)

Many contemporary homes in Southeast Asia adopt minimalist forms combined with:

  • Cross-ventilation

  • Deep roof overhangs


Staircase Inner Court

  • Inner Courts, Courtyards and shaded outdoor spaces

These homes demonstrate how minimalist architecture can respond effectively to tropical climates while minimizing energy use.



Meditation_space_by_Tadao_Ando,_UNESCO,_Paris


2. Tadao Ando’s Minimalist Architecture (Japan)

Architect Tadao Ando’s work showcases minimalist concrete structures that rely heavily on:

  • Natural light

  • Spatial efficiency

  • Thermal mass

While not all projects are explicitly labeled as “green,” their passive design strategies significantly reduce operational energy demands.


3. Modern Passive Houses

Minimalist aesthetics are commonly found in Passive House designs, where simplicity supports airtightness, insulation performance, and energy efficiency.



Alignment with Green Building Rating Systems

Minimalist architecture supports multiple criteria found in major green building certification systems:

LEED (Leadership in Energy and Environmental Design)

  • Energy efficiency

  • Material optimization

  • Indoor environmental quality

BERDE (Philippines)

  • Efficient space planning

  • Passive cooling and lighting strategies

  • Resource-efficient materials

EDGE (Excellence in Design for Greater Efficiencies)

  • Reduced energy use

  • Water efficiency

  • Lower embodied energy in materials

Minimalist design makes it easier to meet these standards when sustainability is considered from the earliest design stages.



Important Consideration: Minimalism Is Not Automatically Sustainable

A minimalist building can still be unsustainable if it:

  • Uses high-carbon materials without mitigation

  • Relies heavily on mechanical systems

  • Ignores local climate and cultural context

True sustainability depends on informed design decisions, not appearance alone.


FINAL THOUGHTS

Minimalist architecture plays a crucial role in sustainable design by significantly reducing material and energy use. It enhances the effectiveness of passive design, improves indoor environmental quality, and fosters mindful, sustainable living. Embraced as a core design philosophy rather than a passing visual trend, minimalism not only contributes to green building practices but also champions long-term environmental responsibility. Adopting this approach is essential for a sustainable future.


Ar. JOEY CASTANEDA

Architect, Sustainable Architecture

Link in account for architectural works.

Linktree account for artworks.




References and further reading recommendations:


  • Le Corbusier. Toward an Architecture

  • United Nations Environment Programme (UNEP). Buildings and Climate Change

  • U.S. Green Building Council (USGBC). LEED Rating System Overview

  • World Green Building Council. Bringing Embodied Carbon Upfront

  • Passive House Institute. Passive Building Principles



PHOTO ATTRIBUTIONS


Meditation space by Tadao Ando, UNESCO, Paris

By John Cummings - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=58134508



The rest of the photos are owned by Architalktural.





Thursday, December 11, 2025

EARTH-SHELTERED HOMES: A Natural Strategy for Sustainable and Green Architecture


EARTH-SHELTERED HOMES: A Natural Strategy for Sustainable and Green Architecture

As climate change and urban expansion pose increasing challenges to building design and construction, architects and planners are rediscovering nature as a source of innovative solutions. One of the most effective strategies is the earth-sheltered home — a structure that is either partially or entirely covered by soil. This groundbreaking architectural approach leverages the earth itself for insulation, protection, and as an environmental buffer, making it an exemplary model for sustainable architecture and green building practices.


OBJECTIVE

In this blog, we will delve into the essential impact of earth-sheltered homes in advancing green building concepts. These innovative homes not only align with but also enhance the three pillars of green building: environmental, economic, and social sustainability. As a key solution for architects dedicated to crafting eco-friendly dwellings, earth-sheltered homes are pivotal in our journey toward a sustainable future. I urge everyone—regardless of your background—to get involved in this critical dialogue, as each of us has a vital part to play in promoting a healthier, greener world for generations to come.



What Is an Earth-Sheltered Home?

An earth-sheltered home is a structure that is built into the ground or covered by soil on one or more sides. There are three main types:

  • Bermed homes – Earth is packed against the exterior walls on one or more sides.

  • Hillside (in-hill) homes – Built directly into a slope, with one exposed façade.

  • Underground homes – Entirely below ground, often with central courtyards or skylights.

These homes are designed to take advantage of the earth’s naturally stable temperatures to improve comfort and reduce energy demands.



Contribution to Sustainable Architecture

1. Energy Efficiency Through Passive Design

The soil surrounding earth-sheltered homes acts as a natural thermal mass: keeps indoor temperatures stable throughout the year; reduces heat loss in cold seasons; and minimizes heat gain in hot climates. This reduces reliance on mechanical heating and cooling systems, which lowers energy consumption and carbon emissions — a key goal of green buildings.



2. Reduced Carbon Footprint

Earth-sheltered homes contribute to climate change mitigation by lowering operational energy use, reducing dependency on fossil-fuel-powered systems and extending building lifespan due to protection from weather. Over time, this significantly decreases the building’s overall lifecycle carbon footprint.



3. Preservation of Natural Landscape

Unlike conventional housing, earth-sheltered homes blend into their surroundings: roofs can be vegetated to create green roofs; natural landforms remain visually intact and wildlife habitats and vegetation can be restored over the structure. This low-impact development approach aligns with sustainable land-use planning principles.



4. Climate Resilience and Disaster Protection

The surrounding earth provides strong physical protection: high resistance to strong winds and storms; natural fire resistance compared to exposed wooden structures; and protection from temperature extremes. This makes earth-sheltered homes valuable in regions facing increasingly severe climate events.



5. Improved Indoor Environmental Quality

Earth-sheltered homes naturally support healthier indoor conditions by providing superior sound insulation, more stable indoor humidity, and protection from outdoor dust and air pollution. When combined with proper ventilation and daylighting systems, they create comfortable, healthy living environments.



6. Water Conservation and Management

These homes often integrate sustainable water strategies such as rainwater harvesting systems, green roofs that slow stormwater runoff, and natural soil filtration around the structure. This reduces pressure on municipal drainage systems and supports water conservation goals.



Role in Green Building Concepts

Earth-sheltered homes strongly support the three pillars of green building:

Green Building Pillar

Contribution of Earth-Sheltered Homes

Environmental

Reduces emissions, preserves landscapes, improves biodiversity

Economic

Lowers long-term energy and maintenance costs

Social

Creates healthier, quieter, more comfortable living spaces

They also align with international green building standards such as those promoted by the U.S. Green Building Council through energy- and site-efficiency-focused rating systems.



Real-World Examples

Notable earth-sheltered projects include:



  • Earth House Estate (Dietikon, Switzerland)








  • Malator House (Pembrokeshire, Wales)








  • Hockerton Housing Project (United Kingdom)


These projects demonstrate how earth-sheltered design can be successfully implemented in modern housing.



Challenges and Considerations in General

Despite their many benefits, earth-sheltered homes require careful planning:

  • Effective waterproofing and drainage systems

  • Proper ventilation and moisture control

  • Higher initial construction costs in some cases

However, these challenges are usually offset by long-term environmental and energy savings.



Challenges in the Philippines

Earth-sheltered homes make sense in the Philippines due to its hot, humid and typhoon-prone climate which makes passive cooling and structural resilience essential. However, despite of its promising potentials, there exist some several local challenges that must be considered:

  • High groundwater levels in coastal and lowland areas;

  • Soil stability and landslide risks in mountainous regions;

  • Need for skilled waterproofing and structural engineering; and

  • Higher initial construction expertise requirements.

These challenges requires proper site selection, specialized technical design and adherence to government's green building/environmental laws and certifications.



FINAL THOUGHTS

Earth-sheltered homes serve as a transformative approach in sustainable architecture, harnessing natural systems to enhance living environments. By utilizing passive thermal control, minimizing environmental impact, and bolstering resilience, they exemplify the key tenets of green building. As the construction industry increasingly embraces lower-carbon and climate-responsive designs, earth-sheltered homes emerge as both a practical and visionary solution for a sustainable future.


Ar. JOEY CASTANEDA

Architect, Sustainable Architecture

Link in account for architectural works.

Linktree account for artworks.




Citations and Recommended Guidance References:

  • United States Department of Energy (DOE). Energy-Efficient Earth Sheltered Homes.

  • University of Minnesota Extension. Earth-Sheltered Housing Design Guidelines.

  • U.S. Green Building Council (USGBC). Sustainable Site and Energy Strategies in Green Buildings.

  • Vale, Brenda & Vale, Robert (2002). The New Autonomous House: Design and Planning for Sustainability. Thames & Hudson.

  • Kibert, Charles J. (2016). Sustainable Construction: Green Building Design and Delivery. Wiley.



PHOTO ATTRIBUTION:


Earth House Estate (Dietikon, Switzerland)

By Archi0780 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3084002


Malator House (Pembrokeshire, Wales)

By Malator Eco House by Alan Hughes, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=153729216


Hockerton Housing Project (United Kingdom)

By Hockerton Housing Project by Richard Croft, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=115585511


Cover Photo:
By Archi0780 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3083981



 

Thursday, December 4, 2025

ECO-BRUTALISM: Where Raw Architecture Meets Regenerative Design | Architalktural

 


ECO-BRUTALISM: Where Raw Architecture Meets Regenerative Design

In recent years, an innovative architectural trend has emerged, merging the unrefined beauty of concrete with the healing essence of nature. This movement, known as eco-brutalism, redefines traditional Brutalist architecture by prioritizing sustainability. Unlike classic Brutalism, which is often characterized by stark, imposing forms, eco-brutalism embraces vibrant greenery, ecological systems, and energy-efficient design, fostering a harmonious coexistence between nature and urban structures. As eco-brutalism gains momentum, it captivates global interest for its remarkable ability to transform dull urban landscapes into flourishing, sustainable ecosystems, paving the way for a healthier future.



OBJECTIVE

I grew up immersed in the Classic Brutalist era, a time defined by the visionary work of renowned architect Leandro Locsin. His masterpieces, including the Cultural Center of the Philippines, the Philippine International Convention Center, and Ninoy Aquino International Airport, have left a profound mark on our architectural landscape. This exposure has given me a deep appreciation for the unique character that Brutalism embodies. Yet, as we face the urgent challenge of climate change, a transformative movement is taking root in architecture. Sustainable design is not only gaining importance but is evolving into a powerful new trend. Enter Eco-Brutalism—a fusion of traditional Brutalism with eco-friendly principles. This innovative approach represents a crucial step toward addressing our environmental concerns while honoring architectural history. Join me as we delve into the compelling world of Eco-Brutalism in this blog article.



What Is Eco-Brutalism?

Eco-brutalism is a contemporary design approach that integrates Brutalist architectural aesthetics with environmentally responsible design principles. It retains the visual strength and geometric clarity of Brutalism while embedding biological and ecological systems such as:

  • Green roofs and rooftop gardens

  • Vertical forests and green walls

  • Passive ventilation and daylighting strategies

  • Renewable and low-carbon building materials

  • Climate-adaptive landscaping

Instead of softening the structure with ornamental details, eco-brutalism emphasizes coexistence between concrete and nature—inviting plants to climb, spill, and envelop the built form.


Characteristics of Eco-Brutalist Architecture

1. Integration of Greenery

Eco-brutalist buildings commonly feature:

  • Cascading plants on concrete balconies

  • Moss-covered retaining walls

  • Terraced gardens embedded into the façade

  • Vegetated podiums and walkways

Greenery softens the heavy concrete massing while improving microclimates and biodiversity.

2. Sustainable Use of Concrete

Concrete is a defining material of Brutalism, but eco-brutalism shifts toward sustainability by using:

  • Low-carbon or geopolymer concrete

  • Recycled aggregates

  • Smart structural design to minimize material output

  • Prefabrication to reduce construction waste

This approach balances durability with environmental responsibility.

3. Passive Design Strategies

Eco-brutalist buildings often incorporate:

  • Natural ventilation through deep openings or breezeways

  • Daylighting via large windows, skylights, and carved voids

  • Thermal mass cooling, as concrete helps regulate indoor temperatures

These reduce energy consumption while enhancing occupant comfort.

4. Long-Lasting, Resilient Structures

Brutalism’s utilitarian approach aligns with sustainability by prioritizing:

  • Longevity

  • Structural resilience

  • Low maintenance

Eco-brutalism enhances this by making structures adaptable and climate-responsive.


Eco-Brutalism and the Green Building Concept

Eco-brutalism contributes meaningfully to all three major pillars of green building: environmental, social, and economic sustainability.

1. Environmental Benefits

  • Reduced Urban Heat Island Effect
    Vegetation cools the surroundings by shading solar-absorbing surfaces.

  • Improved Energy Efficiency
    Passive design and strategically placed greenery reduce cooling and lighting loads.

  • Stormwater Management
    Green roofs and landscaped terraces absorb rainfall and prevent flooding.

  • Biodiversity Support
    Plants integrated into the façade create microhabitats for insects, birds, and small mammals.

2. Social Sustainability

  • Biophilic Experience
    Eco-brutalist buildings reconnect occupants with nature, improving well-being and reducing stress.

  • Engagement and Livability
    Shaded green walkways, rooftop parks, and community terraces enhance quality of life in dense cities.

3. Economic Sustainability

  • Operational Savings
    Energy-efficient systems reduce long-term consumption costs.

  • Durability and Low Maintenance
    Reinforced concrete structures last longer and require minimal upkeep, improving lifecycle performance.



Is Eco-Brutalism Truly Sustainable?

While eco-brutalism offers clear benefits, its sustainability depends on the thoughtfulness of execution. Buildings must incorporate:

  • Efficient irrigation systems

  • Drought-resistant or native plants

  • Proper waterproofing and structural design

  • Responsible material sourcing

  • Compliance with local green building standards (such as BERDE in the Philippines or LEED)

Without these, a building may appear sustainable without delivering long-term environmental performance—what some call “greenwashing”.



Why Eco-Brutalism Is Gaining Popularity

Several factors contribute to the rise of eco-brutalism:

  • Climate-responsive design is more important than ever.

  • Urban areas need more green spaces without expanding outward.

  • Younger generations are drawn to authentic, raw aesthetics paired with sustainability.

  • Cities seek architecture that is both resilient and restorative.

Eco-brutalism offers a middle ground—maintaining structural integrity while reintroducing life and nature into the built environment.




Notable Examples of Eco-Brutalism 

Oasia Hotel Downtown — Singapore (See cover Photo)
  • Oasia Hotel Downtown is a 27-storey mixed-use tower whose façade is covered with climbing plants belonging to dozens of species — over time the concrete + mesh exterior becomes cloaked in greenery.

  • About 40% of the building’s volume is devoted to communal sky gardens and open-air terraces.

  • The design uses natural ventilation and open garden terraces instead of purely air-conditioned enclosed spaces — promoting biodiversity (insects, birds) and creating a “vertical ecosystem.”

  • This shows eco-brutalism at large-scale: a concrete high-rise reimagined as a living structure, reducing the environmental footprint while offering urban green space.


The Barbican Centre, Facade

The Barbican Centre — London, UK

  • While originally built as a classic brutalist structure, the Barbican Centre has undergone sustainable retrofits, integrating green practices and plant-filled spaces.

  • Its conservatory holds more than 1,500 plant species, turning part of the concrete estate into a lush, biodiverse environment.

  • This example shows another face of eco-brutalism — not only in new buildings but also in how older, concrete-heavy structures can be reimagined and rehabilitated to support green design and urban ecology.


The Barbican Centre, Plant-filled spaces



FINAL THOUGHTS

Eco-brutalism signifies a transformative approach to our vision of future cities. By integrating the raw honesty of Brutalism with the fundamentals of sustainable design, it creates a compelling and eco-friendly architectural identity. As climate issues escalate and urban areas become more crowded, eco-brutalism shows that we can achieve a balance between strength and compassion in architecture—where concrete not only defines structures but also harmonizes with nature, placing it at the forefront of urban life.


Ar. JOEY CASTANEDA

Architect, Sustainable Architecture

Link in account for architectural works.

Linktree account for artworks.



References and Recommended Readings


  • Banham, R. (1966). The New Brutalism: Ethic or Aesthetic? Architectural Press.

  • Kellert, S., Heerwagen, J., & Mador, M. (2008). Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life. Wiley.

  • United States Green Building Council (USGBC). LEED v4.1 Standards.

  • Philippine Green Building Council. BERDE Green Building Rating System.

  • Pallasmaa, J. (2005). The Eyes of the Skin: Architecture and the Senses. Wiley.

  • United Nations Environment Programme (UNEP). (2020–2024). Global Status Report for Buildings and Construction.



Photo attribution

Oasia Hotel Downtown — Singapore

By 100pss - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=86898098


The Barbican Centre — London, UK

By Approach to the Barbican Centre by Jim Osley, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=127093944


By Scott Wylie from UK - The Conservatory, Barbican Centre, London. Fujifilm., CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=115468311

Monday, September 29, 2025

LIVING WITH WATER: A Tribute to Kongjian Yu and the Sponge City Concept


Living with Water: A Tribute to Kongjian Yu and the Sponge City Concept

The world of architecture, landscape, and ecological design faces a significant loss with the passing of Professor Kongjian Yu, a visionary Chinese landscape architect who introduced the groundbreaking “sponge city” concept. His impact is evident not only in the resilient cities and lush green corridors he designed but also in the transformative way we now approach water, nature, and sustainability within urban spaces. Yu’s innovative ideas challenged the traditional mindset of managing water through concrete barriers and drainage systems. He advocated for a harmonious relationship with water, viewing it as an essential element that, when embraced and integrated, can enhance our urban environments and safeguard us against climate-related threats. As we confront more frequent floods, rising sea levels, and urban heat stress, his pioneering vision is more crucial than ever. Let us honor his legacy by adopting sustainable practices that put nature back at the heart of our cities.


Floods are not enemies,” explains Professor Kongjian Yu in the World Economic Forum. "We can make friends with floods. We can make friends with water.” 

(Source: weforum.org 2019, see citations below for link).


OBJECTIVE:

This blog stands as my heartfelt tribute to the esteemed landscape architect Kongjian Yu and his remarkable impact on sustainable urban planning. While I have not had the privilege of meeting him personally, the loss of a fellow advocate for sustainable architecture resonates deeply with me. The principles Professor Kongjian Yu has pioneered have profoundly shaped my understanding, even though I have yet to implement them in my own projects. One of my primary goals in writing is to enhance environmental awareness, and I hope this piece inspires your future endeavors. Should it influence your work or decisions, please ensure to attribute your insights to Architect Kongjian Yu, the visionary behind the “Sponge City Concept.” Your acknowledgment can help further his legacy and promote a sustainable future for all.


THE SAD NEWS

According to ArchDaily, Kongjian Yu, the pioneering Chinese landscape architect and urban planner credited with coining the "sponge city" concept, has passed away at 62. According to Reuters, he was killed in a plane crash on Tuesday, September 23, 2025 in the wetlands of Mato Grosso do Sul state, in Brazil, while reportedly filming a documentary about his work, after being featured in the opening program of the São Paulo International Architecture Biennale last week.



We've misunderstood what it means to be developed. We need to develop a new system, a new vernacular to express the changing relationship between land and people.” - Kongjian Yu, in an interview for ArchDaily


What is the Sponge City Concept?

According to Wikipedia, Sponge city is an urban planning model that originated in China, first proposed by Kongjian Yu, that emphasizes the implementation of hydro-ecological infrastructure. Sponge cities focus on flood prevention and stormwater management via green infrastructure instead of purely relying on drainage systems. Urban flooding, water shortages, and the heat island effect can be alleviated by having more urban parks, gardens, green spaces, wetlands, nature strips, and permeable paving, which will both improve ecological biodiversity for urban wildlife and reduce flash floods by serving as reservoirs for capturing, retaining, and absorbing excess stormwater.”


PERSONAL INSIGHT:

The sponge city concept is an innovative, nature-based solution for managing urban water. Rather than treating rainfall as a nuisance to be swiftly drained away, a sponge city intelligently absorbs, stores, filters, and reuses this vital resource, mimicking the natural behavior of a sponge. This transformative principle invites us to rethink urban design: let our cities thrive and function like the ecosystems they are part of.


Principles Behind the Sponge City Concept

  1. Absorb Rainwater Where It Falls

    • Instead of relying only on underground pipes, sponge cities use permeable pavements, green roofs, and rain gardens to soak up stormwater. This reduces flooding and replenishes groundwater.

  2. Store Water Naturally

    • Parks, wetlands, ponds, and restored rivers act as natural reservoirs. These green-blue infrastructures not only hold excess rain but also provide habitats for biodiversity and spaces for people to enjoy.

  3. Filter and Cleanse

    • Vegetation and soil naturally filter pollutants from runoff, improving water quality before it re-enters rivers or aquifers. This reduces reliance on expensive treatment plants and creates healthier ecosystems.

  4. Reuse and Recycle

    • Collected rainwater can be used for irrigation, cooling, or even non-potable household use. In doing so, cities reduce dependence on freshwater sources, making them more resilient in times of drought.

  5. Adapt to Local Ecology

    • Sponge city design is not a one-size-fits-all solution. It respects local geography, climate, and culture. Yu emphasized that solutions should draw from nature itself, designing with the land rather than against it.


Why Sponge Cities Matter Today

  • Climate Resilience: As floods become more frequent, sponge cities protect communities by slowing and absorbing water rather than letting it overwhelm infrastructure.

  • Urban Cooling: By increasing vegetation and open water, sponge cities help mitigate the urban heat island effect, improving public health.

  • Biodiversity: Restored wetlands and green corridors support wildlife, reconnecting cities with nature.

  • Quality of Life: These designs create healthier, greener, and more enjoyable spaces for people to live, work, and relax in.

In essence, sponge cities turn gray infrastructure into green infrastructure, blending function with beauty.


Tianjin Qiaoyuan Park (Tianjin City, built 2008)


Case Examples of Sponge City Projects

China / Projects by Kongjian Yu & Turenscape

  1. Sanya Dong’an Wetland Park, Hainan Province
    In 2016, Turenscape transformed a polluted and degraded wetland corridor into a multifunctional sponge system. The design includes wetlands, ponds, rice paddies, greenways, and coastal habitat restoration. It helps with water retention, filtration, and aquifer recharge, while also providing paths and recreation areas.

  2. Sanya Mangrove Park
    Also in Sanya, Hainan. What was once a trash-strewn landfill with concrete flood walls was reworked into a biodiverse mangrove park with finger-like landforms, skywalks, pathways, elevated pavilions, etc. Its functions are ecological, hydrological (flood control, water filtering) and social (public use).

  3. Nanchang Fish Tail Park, Jiangxi Province
    A more recent project (2022). This was a reclaimed, polluted site (former fish farm + coal ash dump) turned into a “floating forest” park with many small planted islands, water features, paths. It moderates stormwater, improves biodiversity, and serves as public amenity.

  4. Jinan, Shandong Province
    As part of the pilot sponge city program, Jinan aimed to reduce water pollution and revive springs (e.g. Baotu Spring). The projects have included increasing green infrastructure, improving drainage, improving runoff controls to reach high proportions of rainfall retention, etc. These have helped groundwater levels, among other things.

  5. Tianjin Qiaoyuan Wetland Park

    According to Turenscape’s project statement: “Through Regenerative Design and by changing landforms, the natural process of plant adaptation and community evolution is introduced to transform a former deserted shooting range used as a garbage dump, into a low maintenance urban park; providing diverse nature’s services for the city including containing and purifying storm water; improving the saline-alkali soil, providing opportunities for environmental education and creating a cherished aesthetic experience.” (Source: Turrenscape Website. See citations for complete link).

  1. Early Projects / Heritage + Cultural Landscape Retention

    • Zhongshan Shipyard Park, Guangdong Province (2001) — reuse of an old shipyard, preserving industrial structures and integrating landscape to retain cultural memory while also allowing water to permeate and be managed naturally.

    • Red Ribbon Park, Qinhuangdao, Hebei Province (2007) — more minimal but with features like boardwalks, native vegetation, and restoration of natural riverside landscape.

Source: Turenscape website (See citations below for links).



Projects / Adaptations in Southeast Asia & the Philippines (Not all are Turenscape Project)

  1. Benjakitti Forest Park, Bangkok, Thailand
    A great example in Southeast Asia. This park (52.7 ha) used to be a brownfield (former industrial / tobacco factory site), with problems of subsidence and flooding. The design by Turenscape created sponge features: stormwater storage capacity (a large volume), sponge wetlands, recreational boardwalks, etc. It has been resilient: during heavy rainfall events, much of Bangkok flooded but the park and its surroundings largely held up. (Source: Turenscape website - See citations below for links)

  2. Metro Manila, Philippines – Sponge City Principles Eyed
    The Metropolitan Manila Development Authority (MMDA) is planning to integrate sponge city principles into Manila’s flood management framework. Proposed interventions include:

    • permeable pavements

    • underground reservoirs

    • wetlands and parks

    • green roofs

    • riverside esplanades / walkways that capture run-off / nature-based solutions

Source: Philstar Global 2025 (See citations below for links).

  1. Chennai, India – Sponge Parks, Ponds, Underground Rainwater Harvesting
    Though not by Kongjian Yu, Chennai is doing large scale efforts: restoring ponds, creating “sponge parks”, installing underground rainwater harvesting tanks in parks and public spaces. This reduces waterlogging, improves groundwater recharge, and creates usable public space.(Source: downtoearth.org.in - See citations below for exact links)



Lessons from These Examples

  • Multifunctionality is key: Parks and wetlands are not just for flood control; they also offer recreation, habitat, cooling, social gathering, culture. Many projects combine ecological, social, aesthetic, and hydrological functions.

  • Working with existing landscapes/legacy sites: Reclaiming degraded land (old industrial, polluted wetlands, landfills) often offers more impactful gains than starting from scratch. Also, retaining cultural or heritage elements makes the projects more meaningful to the community.

  • Scale & Incremental approach: Some sponge city projects are huge, others are micro (individual parks, streets). Both matter. Smaller projects often serve as demonstrations or pilots, which build public awareness. Over time, scaling up.

  • Local adaptation: Designs reflect the local climate (monsoon vs. temperate), soil, hydrology, ecology, culture, and also the financial & governance context. What works in Sanya may need modification in Metro Manila or Chennai. Some areas already have wetlands or mangroves; others need rain gardens or underground reservoirs.

  • Monitoring & maintenance: It’s not enough to build sponge infrastructure; feedback, data, maintenance, and behavioral change (e.g., reducing solid waste so storm drains aren’t blocked) are all necessary. Several Chinese pilot cities report challenges around upkeep, public awareness, and coordinating jurisdictions.



Kongjian Yu’s Enduring Legacy

Kongjian Yu's vision merges modern science with ancient wisdom in a profound way. Drawing from traditional Chinese water systems, rice paddies, and terraced landscapes, he crafts innovative urban solutions that resonate globally. His influence extends beyond China, inspiring cities across Asia, Europe, and beyond to adopt sponge city principles as a framework for sustainable living. As architects, planners, and engaged citizens, we have the opportunity to honor his legacy by recognizing the essential connection between human settlements and nature. By designing our cities to work with water, rather than against it, we can build resilient urban environments that flourish amid the challenges of climate change.


FINAL REFLECTION

The passing of Kongjian Yu is a significant loss, yet his teachings will continue to inspire architects, designers, and urban thinkers for generations to come. The sponge city concept transcends mere engineering; it embodies a philosophy of humility—serving as an invitation to honor the natural rhythms of our environment and to embrace water as a valuable ally rather than a foe. In remembering his legacy, we must acknowledge a vital truth: the sustainability of future cities relies on our commitment to coexist harmoniously with the natural world, rather than isolating ourselves from it.

“In honoring Kongjian Yu, we remember not only a visionary architect, but a gentle teacher who showed us that by listening to water, we learn how to live in harmony with the earth.”



Ar J CASTANEDA

Architect, Sustainable Architecture

Link in account for architectural works.

Linktree account for artworks.


WATCH OUR VIDEO VERSION OF THIS ARTICLE:



CITATIONS

https://www.archdaily.com/1034437/kongjian-yu-creator-of-the-sponge-city-concept-passes-away-in-brazil-plane-crash?fbclid=IwY2xjawNGqGFleHRuA2FlbQIxMQABHgG53ZDktuea9Lxr0VcufemItHdRSbPL674Y523AXZmDIFyzOlLr8vJXB0D9_aem_RLDqX0QpDFcGZLJjjV29kg


https://www.weforum.org/stories/2019/08/sponge-cities-china-flood-protection-nature-wwf/



https://www.turenscape.com/en/project/index/4.html



https://www.turenscape.com/en/project/detail/4751.html



https://www.turenscape.com/en/project/detail/339.html



https://www.philstar.com/nation/2025/09/07/2471018/sponge-city-principle-eyed-metro-manila




PHOTO ATTRIBUTIONS


By GSAPPstudent - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=74560631



By Mydogistiaotiaohu - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=112853252